A Decomposed Genetic Algorithm for Solving the Joint Product Family Optimization Problem
نویسندگان
چکیده
A critical step when designing a successful product family is to determine a cost-saving platform configuration along with an optimally distinct set of product variants that target different market segments. Numerous optimization-based approaches have been proposed to help resolve the tradeoff between platform commonality and the ability to achieve distinct performance targets for each variant. However, the high dimensionality of an “all-in-one” algorithm for optimizing the joint problem of 1) platform variable selection, 2) platform design and 3) variant design makes most of these approaches impractical when a large number of products is considered. Many existing approaches have restricted the scope of the problem by fixing platform configuration a priori, limiting platform configuration to an allor-none component sharing strategy, or by solving subsets of the joint problem in stages, sacrificing optimality. In this study, we propose a single-stage optimization approach for solving the joint product family problem with generalized commonality using an efficient decomposition solution strategy involving multi-objective genetic algorithms (MOGAs). The proposed approach overcomes prior limitations by introducing a generalized twodimensional commonality chromosome and decomposing the joint formulation into a twolevel GA, where the upper-level determines the optimal platform configuration while each lower-level designs one of the individual variants in the family. Moreover, all sub-problems run in parallel, and the upper-level GA coordinates consistency among the lower-levels using the MPI (Message Passing Interface) library. The proposed approach is demonstrated by optimizing a family of three general aviation aircraft, and results outperform those from a non-decomposed GA. Results also show that the commonality-performance Pareto front contains solutions with generalized commonality, suggesting the need to avoid all-or-none component sharing restrictions in order to avoid sub-optimality. Future work in scaling the decomposed GA to larger product families is also discussed.
منابع مشابه
Presenting a Joint Replenishment-location Model Under all-units Quantity Discount and Solving by Genetic Algorithm and Harmony Search Algorithm
In this paper a model is proposed for distribution centers location and joint replenishment of a distribution system that is responsible for orders and product delivery to distribution centers. This distribution centers are under limitedwarehouse space and this can determine amount of requirement product by considering proposed discount.The proposed model is develop to minimize total costs cons...
متن کاملSolving a Joint Availability-Redundancy Optimization Model with Multi-State Components with Meta-Heuristic
This paper has been worked on a RAP with multi-state components and the performance rate of each component working state may increase by spending technical and organizational activities costs. Whereas RAP belongs to Np-Hard problems, we used Genetic algorithm (GA) and simulated annealing (SA) and for solving the presented problem and calculating system reliability universal generating function ...
متن کاملAn efficient decomposed multiobjective genetic algorithm for solving the joint product platform selection and product family design problem with generalized commonality
Product family optimization involves not only specifying the platform from which the individual product variants will be derived, but also optimizing the platform design and the individual variants. Typically these steps are performed separately, but we propose an efficient decomposed multiobjective genetic algorithm to jointly determine optimal (1) platform selection, (2) platform design, and ...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملOn the optimization of Dombi non-linear programming
Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. In this paper, we study a nonlinear optimization problem in which the constraints are defined as fuzzy relational equations (FRE) with the Dombi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007